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Abstract. In contrast to lumped-parameter models, the distributed and processed-based hydrologic 
models take into account the spatial distribution of the hydrologic processes but became highly 
parameterized. In the Soil and Water Assessment Tool (SWAT) for example, the watershed is 
subdivided into spatial units (subbasins and hydrologic response units, HRU's) and each spatial unit 
has its own unique parameters that are utilized in SWAT simulation.  Sensitivity analyses had been 
used as screening tools for reducing the number of parameters in model calibration. The objective of 
this study was to analyze the sensitivity of the objective functions to changes in parameters used in 
the multiobjective automatic calibration of the SWAT model. We used a Bayesian network to 
estimate the interdependencies of the SWAT parameters. The direct and indirect effect of the 
parameters on the model output was also explored.  Where there are multiple objectives, the 
parameters and their interaction in searching for the Pareto optimum change with position along the 
Pareto front.  The information derived from the Bayesian network requires redefining sensitivity to 
include a description of the interaction of parameters in the calibration search process.  

Keywords. SWAT, Bayesian network, sensitivity, automatic calibration, Pareto, genetic algorithm. 
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Introduction 
Over several decades, hydrologic modeling has evolved from simple methods including 
empirical formulas, unit hydrographs, and analytical equations (i.e., Loague and Freeze, 1985) 
into conceptual rainfall-runoff such as the Sacramento Soil Moisture Accounting (SAC-SMA) 
and distributed process-based models such as the Soil and Water Assessment Tool (SWAT) 
and Hydrologic Simulation Program-Fortran (HSPF). Consequently, the simulation output has 
expanded from single runoff events to continuous time series that eventually included 
streamflow and water quality parameters. In contrast to lumped-parameter models, the 
distributed and processed-based models take into account the spatial distribution of the 
hydrologic processes but became highly parameterized. In SWAT for example, the watershed is 
subdivided into spatial units (subbasins and hydrologic response units, HRU's) and each spatial 
unit has its own unique parameters that are utilized in the simulation.   

Sensitivity analyses have tended to be used as screening tools for reducing the number of 
parameters used in calibration. In an one at time (OAT) approach to sensitivity, each parameter 
is perturbed and the objective of the calibration is recalculated.  Information about the effect of 
the parameter on calibration and the existence of interactions with other parameters is obtained, 
but no specific interactions are examined.  Without information on the interaction of the 
parameters that produced the simulation, it is difficult to convey if the simulation, though 
accurate, makes physical sense. Previous studies acknowledged the correlations and 
interdependence between model parameters (Vrugt et al. 2006; Feyen et al., 2006). The 
Generalized Likelihood Uncertainty Estimation (GLUE; Beven and Freer, 2001) methodology 
analyzes sets of parameters, and purports to take account of interactions among parameters, 
but no specific information about the interactions is produced by the method.   

Sensitivity analysis can be further applied in the building, use, and understanding of models (Ho 
et al., 2005). Tarantola and Saltelli (2003) suggested that sensitivity analysis could obtain vital 
information about the simulated system; such as: identification of calibration variables to model 
reduction or simplification, better understanding of the model structure for given components of 
a system, model quality assurance, and model building in general. To date, no one has yet 
developed a method or reported the relationships and interdependence of parameters in 
hydrologic model calibration and simulation. 

Bayesian networks learn from data the model's structure and the local distributions' parameters 
and have been used in gene regulatory networks, medical research, text analysis, and image 
processing. In this study, we explored the application of Bayesian networks in the sensitivity 
analysis of the SWAT model. Specifically, we analyzed the sensitivity of the objective functions 
to changes in parameters used in the multiobjective automatic calibration of the SWAT model.  

Bayesian Networks 
A Bayesian network is a graphical model for probabilistic relationships among a set of variables.  
When used in conjunction with statistical techniques, this type of graphical model can be used 
to learn causal relationships.  Bayesian networks have been applied in many fields (see 
Lauritzen et al., (2003) for an overview), but have not been utilized in hydrological modeling.  An 
integrated model of fish population and their environment that was developed using a Bayesian 
network (Borsuk et al., 2006) is the closest application reported as of this date. 

The Bayesian network applied in this study is defined by a directed acyclic graph (DAG), where 
directed means that there is a direction for the links among variables, and acyclic precludes a 
set of variables linked in a loop. The Bayesian network is learned by searching for all possible 
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combinations of links among variables and each combination is scored.  Even when constrained 
to directed and acyclic graphs, it is easy to see that the number of possible combinations 
presents a formidable computational challenge as the number of variables increase.  Where 
undirected cycles are allowed, exact inferences quickly become intractable. 

We use a method of learning a Bayesian network developed by Bøttcher (2001).  The method 
relies on the assumption of conditional Gaussian networks.  It is further assumed that the 
parameters associated with one variable (e.g., mean, variance, and coefficients) are 
independent of the parameters associated with other variables, denoted as global parameter 
independence.  Although Bayesian networks lend themselves to inference with incomplete data, 
here we assume that the data is complete, an assumption that is also relied on in the calibration 
procedure. 

In order to determine which DAG is selected to represent the conditional dependencies among 
a set of random variables, expert knowledge can be used, or a network score calculated based 
on how well a DAG represents the conditional dependencies.   The posterior probability of the 
DAG, ( | )p d D is sometimes used to score a DAG (D) given data (d), from Bayes theorem:  

( | ) ( | ) ( ),p D d p d D p D∝  

where, ( | )p d D is the likelihood of D and ( )p D  is the prior probability.  The network score used 
here is the relative probability,  

( , ) ( | ) ( ).p D d p d D p D=  
The network is learned by finding the DAG with the highest network score.  As the number of 
variables increases, the calculation of scores for all possible networks becomes infeasible.  
Bøttcher’s method uses a greedy search among networks with random restarts as a strategy 
that makes it unnecessary to score all possible networks.  The greedy search compares two 
networks that differ by one arrow (connection) and selects the one with highest score then 
proceeds to the next comparison.  To avoid local minima, the starting structure is perturbed and 
the search is restarted.  The final network is selected from the networks resulting from the 
restarted searches. 

Methods 

Model Description 

The Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) was developed by the United 
States Department of Agriculture - Agricultural Research Service (USDA-ARS) "to predict the 
impact of land management practices on water, sediment and agricultural chemical yields in 
large complex watersheds with varying soils, land use and management conditions over a long 
period of time." SWAT is physically based, uses readily available inputs, is computationally 
efficient, and is a continuous model that operates on a daily time step. SWAT is not designed to 
simulate single-event storms. The buildup of pollutants and their impact on water bodies can be 
studied with SWAT simulation runs spanning over several decades. In SWAT, the entire 
watershed can be divided into several subbasins and each subbasin is further divided into 
unique combinations of land use and soil properties called the Hydrologic Response Unit 
(HRU). However, the location of each HRU is not specified in the subbasin. The Geographic 
Information System (GIS) interface (AVSWAT2000) is usually used to input and designate land 
use, soil, weather, groundwater, water use, management, pond and stream water quality data, 



 

4 

and the simulation period (Di Luzio et al., 2001). GIS input files include digital elevation model 
(DEM), land use and soil properties layers, and weather database. 

Watershed Description 

The Calapooia river watershed (US Geological Survey, USGS, 10 digit HUC 1709000303) is a 
tributary of the Willamette river basin west of the Cascades mountain range in Oregon (Figure 
1). It has drainage area of 963 km2 as delineated from a USGS streamflow gaging station 
(44°37'15" N, 123°07'40" W) in Albany, Linn County, Oregon. Its elevation ranged from 56 m to 
1576 m and its land use is mainly agriculture (43%), forest (41.8%), and hay/pasture/range 
areas (11.2%). The remaining areas were composed of wetlands, urban areas, and water 
bodies.  The 10-m DEM used in delineating the watersheds was taken from the Regional 
Ecosystem Office http://www.reo.gov/reo/data/ DEM_Files/indexes/orequadindex.asp). The 
observed daily streamflow data used in calibrating SWAT were obtained from the USGS 
National Water Information System (NWIS) website (http://nwis.waterdata.usgs.gov/ 
nwis/discharge). The state soil geographic (STATSGO) database for Oregon was from the US 
Department of Agriculture - National Resources Conservation Service, USDA-NCRS 
(http://www.ncgc.nrcs.usda.gov/products/datasets/ statsgo). Land use for the Willamette basin 
was acquired from the USGS National Water-Quality Assessment (NAWQA) Program 
(http://or.water.usgs.gov/projs_dir/pn366/landuse.html).  Climate data were taken from the 
Oregon Climatic Service (http://www.ocs.oregonstate.edu/). 
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Figure 1. The Calapooia river watershed (delineated into 17 subbasins) in Oregon, USA. 
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Automatic Calibration  

The autocalibration method proposed by Confesor and Whittaker (2007) was employed in this 
study. The SWAT model was initially set up using the Arcview interface (AVSWAT2000) to 
SWAT (Di Luzio et al., 2001). The subbasins were delineated with a threshold size of 2100 
hectares and the dominant landuse method, resulting in 17 subbasins. Based on the SWAT 
user’s manual (Neitsch et al., 2002) and previous SWAT sensitivity analysis studies (Eckhardt 
and Arnold, 2001; Van Liew et al., 2005), sixteen variables were used in the calibration. The 17 
subbasins were grouped into 3 locations representing steep, medium, and flat areas of the 
watershed. The subbasin/HRU slope (HRUSLP) and slope length (SLSUB) were optimized for 
each location group in the calibration. The curve number (CN) for each unique landuse and 
hydrologic group combination was explicitly calibrated resulting in 5 CN parameters. The soil 
evaporation compensation factor (ESCO) was also calibrated for each dominant landuse. This 
scheme produced 25 parameters to be optimized in the autocalibration. The limits of the 
variables for calibration were fixed to ensure realistic and acceptable values representative of 
the watershed characteristics. The calibration (October 1, 1972 to September 30, 1976) and 
validation (October 1,1976 to September 30, 1980) periods were set for four water years.  

The objective functions were to minimize the average Root Mean Square Error (RMSE) of the 
observed vs. simulated peak (driven) flows and to minimize the average RMSE of the observed 
vs. simulated low (non-driven) flows. The RMSE was defined as: 
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where, n is the number of time steps with peak or low flow events, Qobs,i is the observed 
streamflow at time i, and Qsim,i  is the simulated streamflow at time i. 

The hydrographs were partitioned into driven and nondriven components assuming that the 
behavior of the watershed is different during the periods driven by rainfall and periods without 
rain (Boyle et al., 2001). The driven flow can be associated with the rising limb of the 
hydrograph and the nondriven flow with the recession flow. A baseflow filter was used to 
estimate the baseflow component of the observed streamflow (Arnold et al., 1995; Arnold and 
Allen, 1999). The streamflow was designated as driven when the first pass baseflow was less 
than 80% of the observed streamflow; otherwise the streamflow was classified as nondriven. 
The Nash-Sutcliffe model efficiency (NSE) was used to evaluate SWAT’s overall performance at 
calibration and validation:  
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where, obsQ is average of the observed daily flows and all the other variables are as previously 
defined. The Nash-Sutcliffe efficiency ranges from negative infinity to 1, with 1 indicating a 
perfect fit. 

The implementation of the multiobjective evolutionary algorithm was simplified by using the 
genetic algorithm package (genalg) of the R statistical language (http://www.r-project.org).  The 
computational scheme with two objective functions used in this study was implemented in a 
Beowulf cluster with 24 nodes (see Confesor and Whittaker, 2007) and is shown in Figure 2.  
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SWAT and the nondominated sorting genetic algorithm's (NSGA; Deb et al., 2002) 
nondomination ranking were created in Fortran as shared libraries callable in R. An initial 
population of 1000 solutions was randomly generated. Each solution contains the values of the 
25 calibrated parameters assigned in real-coded string.  SWAT was called as a subroutine and 
its source code was modified so that the values of the parameters of each solution were read 
instead of the values from the input files previously generated by AVSWAT2000. The SWAT 
daily streamflow output was used to evaluate each solution with the objective functions.  

In the first iteration, a child population (size=1000) was then generated through selection, 
crossover, and mutation of the initial parent population. SWAT was then called and the child 
population was also evaluated with the objectives functions. NSGA ranking was called as a 
subroutine to implement non-dominated sorting on the combined parent and child population. 
The best 1000 individuals were selected as the next parent population to generate the new child 
population for the next iteration using crossover and mutation. After the first iteration, only the 
new child population is evaluated for the two objective functions since the parent population was 
previously evaluated and its fitness was already known. The optimization was stopped at 500 
generations because changes in the objective functions' values were very small. 

 START

Run R and load libraries 

MERGE PARENT and CHILD POPULATIONS 

CALL NSGA-II (nondominated sorting) 

Terminate 
iteration? 

END

NO

Generate initial PARENT population 

Read limits for calibration variables 

Call SWAT 

Evaluate Objective 1 and Objective 2 

Select new PARENT population 

is iteration > 1? 

YES

YES
NO

Iteration = 1 
Iteration = Iteration + 1 

Crossover and mutation 
 (results in new  

CHILD population) 

 
Figure 2. Genetic Algorithm Computational Scheme in R Linking NSGA-II and SWAT with 2 

Objective Functions. 
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Implementation of Bayesian networks  

We hypothesized that different networks were used in different parts of the Pareto front, based 
on the observation that different parameters affect event driven flow and nondriven flow (the two 
objectives) in different ways.  To examine this hypothesis, we extracted three subsets of 50 
calibrated models each from the Pareto front after 500 generations (Figure 3). These subsets 
represent the solutions with: 1) the lowest event driven RMSE, 2) the objectives given 
approximately the same weight, and 3) the lowest nondriven flow RMSE. The Bayesian 
networks were then constructed from each of the three groups. To check that the network 
represents the calibrated model, one thousand (1000) solutions were simulated from each of the 
Bayesian network. The simulation is independent of the data used in the calibration, and 
consists of draws from the Gaussian distribution associated with each parameter and the 
regression relationships among parameters. These 1000 solutions were then evaluated by 
running the SWAT model and the corresponding objective functions calculated. We used the 
Deal R package (Bøttcher and Dethlefsen, 2003) for implementing estimation of the Bayesian 
network described above.  All calculations were programmed and run in R. The Rgraphviz 
package was used for visualization of the networks (http://www.bioconductor.org/repository 
/release1.5/package/html/Rgraphviz.html).  
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Figure 3. The objective space showing the Pareto front (500th iteration) and the solutions 

generated with the Bayesian network at different parts of the front. 

One At a Time (OAT) sensitivity 

The OAT method was applied to the calibrated models as a comparison to the Bayesian 
network results.  The method is a simple variation of calculation of a numerical partial derivative, 
where a single parameter is perturbed and the effect on the objective function observed.  Given 
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a p dimensional vector of parameters (α), the sensitivity of the ith parameter to a perturbation ∆ 
is 
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where, ( )αy is the model output of interest. In this method, the effect is conditioned on the level 
of the other parameters, and no interaction with other parameters is considered. Each of the 25 
parameters was perturbed in all the 1000 solutions of the 500th generation. The sensitivity of 
each parameter was then calculated as the average of 1000 solutions.  

Discussion 

Calibration and Validation 

The Pareto front consisting of 1000 solutions at the 500th iteration is shown in Figure 3. Each 
solution in the front was a calibrated model with a unique combination of the 25 parameters. 
The daily Nash-Sutcliffe model efficiency for these calibrated models varied between 0.81 and 
0.87.  There was no correlation between position on the front and the model efficiency measure. 
The daily Nash-Sutcliffe model efficiency for the validated models ranged from 0.76 to 0.81. 
Figure 4 shows the range of the simulated flows with the observed value at both the calibration 
and validation periods. 
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Figure 4. Observed streamflow and the simulated flow at both the calibration and validation 

periods, in the Calapooia watershed, OR, USA. 
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Sensitivity 

In its simplest sense, sensitivity is the change in a single objective function in response to 
change in a parameter influencing the objective function.  Table 1 presents the result of a simple 
one at a time perturbation calculation of sensitivity for the two objectives in this study. It should 
be noted that the sensitivity was based on 1000 unique combinations of the parameters. The 
sensitivity of most of the parameters varied with the different objective functions. The deep 
percolation fraction (RCHRGDP) is clearly identified as having by far the largest effect on the 
objective functions. It is the most sensitive parameter for the RMSE of nondriven flows and the 
second most sensitive for the RMSE of driven flows. Even in this simple case, however, it is not 
entirely clear how to interpret the sensitivity measurement where there are two objectives.  
Furthermore, the objectives themselves interact as shown below with the use of Bayesian 
networks. 

Table 1. Parameter sensitivity measured by one at a time (OAT) perturbation. 
OAT Sensitivity * 

PARAMETER Description 
RMSE driven RMSE nondriven 

HRUSLP_FLAT Subbasin/HRU slope, flat areas (< 5%) 0.738222 (1) 0.029085 (8) 
RCHRGDP Deep percolation fraction 0.333860 (2) 0.783473 (1) 
AWHC Available water holding capacity 0.169391 (3) 0.050535 (4) 
GWREVAP Groundwater revap coefficient 0.072713 (4) 0.108941 (2) 
ESCO_RYER Soil evaporation compensation factor for perennial grass 0.030201 (5) 0.038923 (5) 
HRUSLP_MID Subbasin/HRU slope, medium slope areas (5-20%) 0.020693 (6) 0.031537 (7) 
ESCO_FRST Soil evaporation compensation factor for forested areas 0.017529 (7) 0.012107 (10) 
HRUSLP_STEEP Subbasin/HRU slope, steep areas (> 20%) 0.017255 (8) 0.031961 (6) 
CN2_RYER_C Curve number for perennial grass in hydrologic group C 0.008515 (9) 0.009164 (11) 
REVAP_MN Shallow aquifer H2O threshold depth for revap or deep percolat. 0.008363 (10) 0.054043 (3) 
GWQMN Shallow aquifer H2O threshold depth for return flow to occur 0.006390 (11) 0.014738 (9) 
ALPHABF Baseflow alpha factor 0.005003 (12) 0.008391 (12) 
GWDELAY Groundwater delay time 0.002788 (13) 0.006619 (13) 
CN2_FRST_B Curve number for forest in hydrologic group B 0.001850 (14) 0.001831 (15) 
SURLAG Surface runoff lag coefficient 0.001432 (15) 0.000249 (23) 
CN2_RYER_D Curve number for perennial grass in hydrologic group D 0.001110 (16) 0.003227 (14) 
SMFMN Melt factor for snow on December 21 0.000973 (17) 0.000446 (17) 
SMTMP Snowfall temperature 0.000634 (18) 0.000357 (20) 
CN2_FRST_D Curve number for forest in hydrologic group D 0.000538 (19) 0.000393 (18) 
SLSUB_STEEP Slope length, steep areas (> 20%) 0.000329 (20) 0.001715 (16) 
CN2_FRST_C Curve number for forest in hydrologic group C 0.000323 (21) 0.000280 (22) 
SLSUB_MID Slope length, medium slope areas (> 5-20%) 0.000257 (22) 0.000293 (21) 
CHK2 Effective hydraulic conductivity in main channel alluvium 0.000149 (23) 0.000358 (19) 
SMFMX Melt factor for snow on June 21 0.000046 (24) 0.000010 (24) 
SLSUB_FLAT Slope length, flat areas (< 5%) 0.000030 (25) 0.000006 (25) 
*Numbers in parenthesis denote OAT sensitivity rank (lower means more sensitive). 

Bayesian networks and parameter interdependence 

Although the Bayesian networks are commonly used to assess causality, in this study, the 
network was used to show how the genetic algorithm reached parameter values for a population 
on the Pareto optimal front. This approach contrast with previous automatic model calibrations 
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where a calibrated model is computed using one of the available techniques and the end result 
is known, but the way that the calibration algorithm used the parameters to achieve an optimum 
calibration is unknown. As shown in Figure 3, the network does well in the simulation of the 
Pareto front, implying that the network correctly estimated the relationships of the model 
parameters. The relation of the network variance about the calculated front to sources of error 
requires further research.  We speculate that the variance is more meaningful than a simple 
artifact of the statistical assumptions of the Bayesian network.  

Figure 5 (event driven subset), Figure 6 (equal weight subset), and Figure 7 (nondriven subset) 
show the networks learned by application of the Bayesian network.  These networks should not 
be interpreted as a description of physical causality. In the center of Figure 5, the network has a 
parameter (node) for the RCHRGDP linked to ALPHABF, SMFMN, SLSUB_STEEP, and 
CN2_RYER_D as its parents.  There is no physical causality between these parameters in the 
SWAT model.  What the link means is that a change in the parameters ALPHABF, SMFMN, 
SLSUB_STEEP, and CN2_RYER_D requires a change in the parameter RCHGDP. The 
assumption of global parameter independence and the requirement of an acyclic graph are 
evident in this interpretation.  The node RCHRGDP is a Gaussian regression function of 
ALPHABF, SMFMN, SLSUB_STEEP, and CN2_RYER_D. CN2_RYER_D has no parents and 
is described by the mean and variance of the data, while the other three parents are connected 
to other parameters. The regression equation is: RCHRDP = -0.460 + 0.165ALPHABF + 
0.004CN2_RYER_D - 0.006SLSUB_STEEP + 0.014SMFMN; with a variance of 0.00014. It is 
also possible that a parameter has an indirect and direct connection to the other nodes (e.g., 
CN2_RYER_D and RCHRGDP). In the same manner, each parameter used in the calibration is 
expressed as a regression equation with intercept, variance, and the parent parameters as 
coefficients. It should be noted that the nodes that are not directly connected to the objective 
functions have an indirect effect on the objective functions. 

 

Figure 5. Bayesian network estimated for the event driven subset of calibrated SWAT models. 
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Figure 6. Bayesian network estimated for the equal weight subset of calibrated SWAT models. 

 

 

Figure 7. Bayesian network estimated for the nondriven subset of calibrated SWAT models. 



 

12 

From the networks, it is evident that the parameters and their interaction change with position 
along the Pareto front. It is interesting that RCHRGDP was the most OAT-sensitive parameter 
and had a direct link to the objective functions in all the networks. However, other OAT-sensitive 
parameters (AWHC, GWREVAP, HRU_FLAT) were directly and indirectly connected to the 
objective functions in the event-driven network, and not connected to the objective outputs in 
the other networks. Furthermore, CN2_RYER_D was not OAT-sensitive but was directly 
connected to the two objective functions in the event-driven network; directly connected to the 
RMSE of nondriven flow in the equal weight network; and not connected at all in the nondriven 
network. It is noteworthy that the network changes with movement of the front as the 
autocalibration computation moves toward convergence. We hypothesize that there is useful 
information in these changes and will further explore this topic in future studies.  

Conclusions 
 
The objective of the study was to analyze the effect of parameters used in multiobjective 
automatic calibration of a hydrologic model.  Information about the interaction of parameters in 
the calibration was not available from the application of previously published methods for 
sensitivity measurement.  Application of a Bayesian network method to the results of the 
calibration provided information on the interaction of parameters used by the calibration 
algorithm to find Pareto optimum calibrated models.  Where there are multiple objectives, the 
parameters and their interaction in searching for the Pareto optimum change with position along 
the Pareto front.  The information available from a Bayesian network requires redefining 
sensitivity to include a description of the interaction of parameters in the calibration search 
process.  
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